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Abstract

In a turbofan engine, usually, the acoustically lined region consists of several liner segments separated by longitudinal

hard-splices due to manufacturing. The non-uniform impedance in the circumferential direction will excite other

circumferential modes besides the incident modes. Consequently, the acoustic propagation in and radiation from a

turbofan is considerably different from that of an uniform impedance. To investigate the effect of liner hard-splices on

acoustic radiation and propagation, a boundary integral equation method (BIEM) in two-dimensional (2D) is expanded

into a three-dimensional form. In this model, an axially uniform inflow passes a cylindrical finite duct and the liner inside

the duct may be circumferentially or axially non-uniform. The verifications are presented and the influence of hard-splices

is investigated. Then an infinite duct model is developed to investigate the mechanism of mode scattering excited by a

circumferentially non-uniform boundary. BIEM is combined with the mode-matching method. The model is validated by

comparing with the analytical result in an infinite circular duct with a hard wall. Then a variety of liner configurations

containing periodic/non-periodic hard-splices are studied and the mode scattering mechanism is discussed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The ducted-fan tone noise generated by modern high-bypass-ratio turbofan aero-engines operating at
supersonic fan tip speeds has become one of the principal aircraft engine noise sources. The prediction of
ducted-fan noises is one of the key elements affecting the design of new engines. In the last few decades,
although considerable success has been achieved in understanding and optimizing the attenuation of sound
waves in an acoustically lined duct, there still remain various areas that require more attention and further
investigations. In particular, the effect of circumferentially non-uniform impedance on the acoustic
propagation in and radiation from a duct has received relatively little attention.

Acoustic liners are often assumed to be circumferentially uniform in the design stage; then the acoustic field
of a duct is axisymmetric. Actually, due to the restriction of manufacturing capacity, the acoustic liners in
nacelle have hard-splices in the circumferential direction, which separate adjacent liner panels, shown in Fig. 1.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

a duct radius
A�m0n0

complex modal coefficients
B number of spinning points
c sound velocity
Em0n0 eigenfunction in duct acoustics
E�m0n0

conjugate of Em0n0

f1 interior surface of the duct wall
f2 interior surface of the duct upstream

opening
f3 interior surface of the duct downstream

opening
f4 exterior surface of the duct wall
f5 exterior surface of the duct upstream

opening
f6 exterior surface of the duct downstream

opening
FT thrust of each spinning point
G3�H Green function of a 3D Helmholtz

equation
J Bessel function; number of hard-splices
k wavenumber
ka Helmholtz number

kr;m0n0 radial wavenumber in duct acoustics
k�Z axial wavenumber in duct acoustics
l arbitrary integer
L duct length
m0 circumferential mode order
mI circumferential mode order of an excited

mode
M maximal circumferential modal order
Ma V/c Mach number of a moving duct
n0 radial mode order
N maximal radial modal order
p0 acoustic pressure
Q coefficient of acoustic pressure
(r, y, z) reference frame fixed in fluid at rest
(r, y, Z)moving stretched frame of reference
r00 radius of spinning points
V velocity of duct moving
xj, X observer point
yj, Y source point
zn specific acoustic impedance
O rotating velocity of the fan axis
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Ma2
p

k k/b
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The liners’ performance will be affected by these liner hard-splices and this is verified by experimental
investigations. The in-flight measurements of circumferential modal spectra of the Rolls-Royce Tay 650 engine
installed on the Fokker 100 aircraft indicated that the acoustic radiation from the inlet was substantially
affected by the presence of hard-splices [1]. In addition, these measurements confirmed that the same engine
radiated a substantially lower noise level when fitted with a single-piece liner as opposed to a three-splice liner.
Other experimental studies [2] have corroborated these findings. The acoustic circumferential mode
transmitting inside a duct can be transferred from an incident mode to some others by this circumferentially
non-uniform acoustic property, which is different from that of a uniform liner. An experimental program in
the NLR spinning mode synthesizer was carried out to study the modulation effect caused by hard-splices [2].
Fig. 1. Sketch of an acoustic liner with longitudinal hard-splices.
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It is now evident that it is desirable to estimate the influence of hard-splices on the behavior of acoustic liners.
Therefore, the development of tools to determine this influence is important.

Due to the non-uniform impedance boundary caused by hard-splices on liners, three-dimensional (3D)
calculations are required. Many computational approaches such as FEM [3,4], and CAA [5–7] have been
applied for the non-uniform impedance boundary. Complex actual duct geometries and flows can be dealt
with by these approaches, but the excessive computational time and memory requirements are expensive
against these advantages, which make it impractical for direct application to parametric or liner optimization
designs studies. Another numerical method called the point-matching method has also been used to analyze
the problem of hard-splices on liners [8]. The ability to compute any portion of the sound field without
calculating the entire field makes its calculation faster than that by FEM and CAA methods. It is unfortunate
that in this model the flow is neglected and a finite duct is not involved. Analytical methods are accurate and
rapid for prediction when the duct geometries and the flows are simple. But the complex eigenequations in
analytical methods are difficult to solve [9,10] and the radiation from a finite duct will not be dealt with in
these analytical methods.

In the numerical methods mentioned above, the investigation focuses only on the upstream propagation
inside a duct. In the analytical methods, the acoustic reflections at the duct openings are neglected, viz. the
duct is semi-infinite. Neither the acoustic interferences by the acoustic pressure radiated from the upstream/
downstream openings nor the acoustic reflections from both openings are considered in these models. These
interferences and reflections are important since present-day wide-cord-fan engine ducts have a length-to-
diameter ratio L/Do1 and it is obvious that the interferences from both duct openings cannot be neglected
due to the short length of the duct and the high frequencies of the acoustic sources. Furthermore, the incident
sources in all the above models must be specific modal coefficients, which are not easy to obtain in practice.

In this paper a 3D boundary element model in the frequency domain has been developed to deal with a
circumferentially non-uniform impedance boundary. The acoustic field inside/outside a duct is obtained
simultaneously by this model, involving the upstream/downstream acoustic propagation inside a finite duct and the
reflection/radiation from both the openings. This model has been verified [11] by predicting the acoustic
directivities of a finite duct with a circumferentially uniform boundary. In this paper the interior surface of a duct
wall may have arbitrarily distributed locally reacting liners, circumferentially segmented or axially segmented. The
incident sources are inside the duct and assumed to be known in advance, which can be easily obtained. An infinite
duct model by boundary integral equation method (BIEM) combined with the mode-matching method has also
been developed to study the mode scattering phenomena caused by liner hard-splices.

The aim of our work is to investigate the effects of hard-splices and to compare the performance of
circumferentially segmented liners with that of uniform liners, and furthermore, to investigate the mode
scattering phenomena caused by hard-splices. For engineering purposes, an accurate and rapid method is
presented in this paper to evaluate the hard-splices’ scattering effects on noise reductions.

2. Finite length duct model by BIEM

2.1. Physical model and boundary integral equations

It is assumed that a turbofan duct is modeled approximately by a cylindrical duct containing an axially
uniform mean-flow. All the nonlinear effects are neglected. The total acoustic field is partitioned into two
regions: the acoustic propagation inside the duct and the acoustic radiation outside the duct. The boundary
surfaces of the propagation are composed of the interior wall of the duct denoted by f1, the interior surface of
the duct upstream opening and the downstream opening denoted by f2, f3. The boundary surfaces of the
radiation are composed of the exterior wall of the duct denoted by f4 and the exterior surface of the duct
upstream opening and the downstream opening denoted by f5, f6. All the boundary surfaces of a finite duct are
shown in Fig. 2.

The total acoustic pressure propagated inside the duct is a sum of the known incident acoustic pressure and
the unknown scattering acoustic pressure

p0t ¼ p0i þ p0s. (1)
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Fig. 2. Sketch of finite duct boundary surfaces.
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In the outer region there exists no incident sound pressure except for the scattering pressure

p0t ¼ p0s. (2)

A uniform axial inflow with Mach number Ma passes the duct, namely the medium is at rest and the duct is
moving in the axial direction with Mach number Ma. In a frame of fluid at rest (r,y,z), p0s in the regions
barring duct surfaces is governed by a homogeneous wave equation in cylindrical coordinate as follows:

1

c2
q2

qt2
�

1

r

q
qr

r
q
qr

� �
�

1

r2
q2

qy2
�

q2

qz2

� �
p0s ¼ 0. (3)

The acoustic pressure is periodic in an axially moving and stretched frame with Z ¼ (z�Vt)/b; the Fourier
form is

p0sðr; y;Z; tÞ ¼
X1

n¼�1

Qn
s ðr; y;ZÞe

iðnBOt�kMaZÞ. (4)

Translating into the moving and stretched frame and moving time dependence the governing Eq. (3) is
converted into a 3D Helmholtz equation

1

r

q
qr

r
q
qr

� �
þ

q2

qZ2
þ

1

r2
q2

qy2
þ k2

� �
Qn

s ðr; y;ZÞ ¼ 0. (5)

The detailed derivation from Eq. (3) to Eq. (5) can be found in Appendix A of Ref. [11].
The Green function of a 3D Helmholtz equation is

G3�H ðYjXÞ ¼
e�ikR

4pR
, (6)

where

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 � 2rr0 cosðy� y0Þ þ ðZ � Z0Þ2

q
. (7)

Here (r, y, Z) is the coordinate of the observer point X which refers to a point inside or outside the duct. (r0, y,
Z0) is the coordinate of the source point Y which refers to a point on the interior/exterior surfaces of the duct.
Then the solution of Eq. (5) can be expressed in a boundary integral equation form

Qn
s ðXÞ ¼

Z
S

QnðYÞ
qG3�H ðYjXÞ

qn
� G3�H ðYjXÞ

qQnðY Þ

qn

� �
dS. (8)
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The integral surfaces are the interior/exterior surfaces of the duct wall and duct openings. The normal
direction of a boundary is pointed toward the regions, so that the normal direction of the interior duct surfaces
is opposite to that of the exterior surfaces. The incident acoustic pressure and the total acoustic pressure can
also be written as

p0iðr; y;Z; tÞ ¼
X1

n¼�1

Qn
i ðr; y;ZÞ e

iðnBOt�kMaZÞ, (9)

p0tðr; y;Z; tÞ ¼
X1

n¼�1

Qn
t ðr; y;ZÞ e

iðnBOt�kMaZÞ. (10)

According to Eq. (1) the coefficient Qt
n of the total interior acoustic pressure is governed by

Qn
t ðXÞ ¼

Z
S

Qn
t ðYÞ

qG3�H ðYjXÞ

qn
� G3�H ðYjXÞ

qQn
t ðY Þ

qn

� �
dS þQn

i ðXÞ. (11)

The integral surfaces are composed of f1, f2 and f3. The coefficient Qtc
n of the external acoustic pressure is

governed by

Qn
t ðXÞ ¼

Z
S

Qn
t ðYÞ

qG3�H ðYjXÞ

qn
� G3�H ðYjXÞ

qQn
t ðYÞ

qn

� �
dS. (12)

The integral surfaces are composed of f4, f5 and f6.
If Qt

n(Y) on the integral surfaces is known, the Qt
n(X) at any point could be obtained by Eqs. (11) and (12).

When the observer points are located on the integral surfaces a coupling equation can be obtained. The
coefficient Qtc

n of the acoustic pressure on the smooth interior surfaces is governed by

1

2
Qn

t ðXÞ ¼

Z
S

Qn
t ðYÞ

qG3�H ðYjXÞ

qn
� G3�H ðYjXÞ

qQn
t ðYÞ

qn

� �
dS þQn

i ðYÞ. (13)

The coefficient Qtc
n of the acoustic pressure on the smooth exterior surfaces is governed by

1

2
Qn

t ðXÞ ¼

Z
S

Qn
t ðYÞ

qG3�H ðYjXÞ

qn
� G3�H ðYjXÞ

qQn
t ðYÞ

qn

� �
dS. (14)

The impedance boundary condition on the interior surface of a duct wall is [11]

qQn
t

qn
¼ �

iMa2

b3znk

q2Qn
t

qZ2
�

2ik
Ma

qQn
t

qZ
�

k2

Ma2
Qn

t

� �
. (15)

The boundary condition of a rigid wall is

qQn
t

qn
¼ 0. (16)

The specific impedance zn is normalized with respect to the characteristic impedance r0c0 of the air. From
Eqs. (13) and (15), the governing equation of Qt

n on the interior surfaces of the wall and upstream/
downstream openings can be written as

1

2
Qn

t ðXÞ ¼

Z
f 1

Qn
t ðYÞ

e�ikRðikRþ 1Þ

4pR2

ðr0 � r cosðy� y0ÞÞ
R

� �
dS

þ

Z
f 1

iMa2e�ikR

4pRb2znk

q2Qn
t ðY Þ

qZ2
�

2ik

bMa

qQn
t ðY Þ

qZ
�

k2

b2Ma2
Qn

t ðYÞ

� �� �
dS

þ

Z
f 2

Qn
t ðYÞ

e�ikRðikRþ 1Þ

4pR2

ðZ0 � ZÞ

R
þ

qQn
t ðY Þ

qZ

e�ikR

4pR

� �
dS

þ

Z
f 3

�Qn
t ðYÞ

e�ikRðikRþ 1Þ

4pR2

ðZ0 � ZÞ

R
�

qQn
t ðY Þ

qZ

e�ikR

4pR

� �
dS þQn

i ðYÞ. (17)
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The partial differential terms q2Qt
n/qZ2 and qQt

n/qZ on the interior wall f1 in Eq. (17) can be expressed by
the differential schemes about Qt

n. If the surface f1 is rigid, Eq. (17) reduces to

1

2
Qn

t ðXÞ ¼

Z
f 1

Qn
t ðYÞ

e�ikRðikRþ 1Þ

4pR2

ðr0 � r cosðy� y0ÞÞ
R

dS

þ

Z
f 2

Qn
t ðYÞ

e�ikRðikRþ 1Þ

4pR2

ðZ0 � ZÞ

R
þ

qQn
t ðYÞ

qZ

e�ikR

4pR

� �
dS

þ

Z
f 3

�Qn
t ðYÞ

e�ikRðikRþ 1Þ

4pR2

ðZ0 � ZÞ

R
�

qQn
t ðYÞ

qZ

e�ikR

4pR

� �
dS þQn

i ðYÞ. (18)

If the exterior wall of the duct f4 is rigid, the governing equation of Qt
n on the exterior surfaces of the duct

wall and upstream/downstream openings is

1

2
Qn

t ðXÞ ¼

Z
f 4

�Qn
t ðYÞ

e�ikRðikRþ 1Þ

4pR2

ðr0 � r cosðy� y0ÞÞ
R

� �
dS

þ

Z
f 5

�Qn
t ðYÞ

e�ikRðikRþ 1Þ

4pR2

ðZ0 � ZÞ

R
�

qQn
t ðY Þ

qZ

e�ikR

4pR

� �
dS

þ

Z
f 6

Qn
t ðYÞ

e�ikRðikRþ 1Þ

4pR2

ðZ0 � ZÞ

R
þ

qQn
t ðY Þ

qZ

e�ikR

4pR

� �
dS. (19)

Continuous conditions are used on the upstream/downstream openings

Qn
tðf 2Þ
¼ Qn

tðf 5Þ
; Qn

tðf 3Þ
¼ Qn

tðf 6Þ
, (20a,b)

qQn
tðf 2Þ

qZ
¼

qQn
tðf 5Þ

qZ
;

qQn
tðf 3Þ

qZ
¼

qQn
tðf 6Þ

qZ
. (21a,b)

When Qt
n on all the integral surfaces are obtained by Eqs. (17)–(21), the acoustic pressure of any portion of

interest in the acoustic field can be expressed. For any observer point X inside the duct

Qn
t ðXÞ ¼

Z
f 1

Qn
t ðYÞ

e�ikRðikRþ 1Þ

4pR2

ðr0 � r cosðy� y0ÞÞ
R

� �
dS

þ

Z
f 1

iMa2e�ikR

4pRb2znk

q2Qn
t ðYÞ

qZ2
�

2ik

bMa

qQn
t ðYÞ

qZ
�

k2

b2Ma2
Qn

t ðYÞ

� �� �
dS

þ

Z
f 2

Qn
t ðYÞ

e�ikRðikRþ 1Þ

4pR2

ðZ0 � ZÞ

R
þ

qQn
t ðYÞ

qZ

e�ikR

4pR

� �
dS

þ

Z
f 3

�Qn
t ðYÞ

e�ikRðikRþ 1Þ

4pR2

ðZ0 � ZÞ

R
�

qQn
t ðYÞ

qZ

e�ikR

4pR

� �
dS þQn

i ðXÞ. (22)

For any observer point X outside the duct

Qn
t ðXÞ ¼

Z
f 4

�Qn
t ðYÞ

e�ikRðikRþ 1Þ

4pR2

ðr0 � r cosðy� y0ÞÞ
R

� �
dS

þ

Z
f 5

�Qn
t ðYÞ

e�ikRðikRþ 1Þ

4pR2

ðZ0 � ZÞ

R
�

qQn
t ðYÞ

qZ

e�ikR

4pR

� �
dS

þ

Z
f 6

Qn
t ðYÞ

e�ikRðikRþ 1Þ

4pR2

ðZ0 � ZÞ

R
þ

qQn
t ðYÞ

qZ

e�ikR

4pR

� �
dS. (23)

All of the above expressions are suitable for arbitrarily distributed, circumferentially or axially segmented,
locally reacting liners.
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2.2. Numerical implementation

The boundary integral Eq. (18) is numerically discretized as follows:

Ap1ðyi; yjÞQ
n
1ðyjÞ þ Ap2ðyi; yjÞQ

n
2ðyjÞ þ Ap3ðyi; yjÞQ

n
3ðyjÞ

þ Av2ðyi; yjÞQ
n
Z2ðyjÞ þ Av3ðyi; yjÞQ

n
Z3ðyjÞ ¼ Qn

i ðyiÞ, (24)

where Q1
n(yj) is the Qt

n of the point yj on the f1 surface, Q2
n(yj) is the Qt

n of the point yj on the f2 surface, Q3
n(yj)

is the Qt
n of the point yj on the f3 surface, QZ2

n(yj) is the qQt
n/qZ of the point yj on the f2 surface, QZ3

n(yj) is the
qQt

n/qZ of the point yj on the f3 surface and Qi
n(yi) is the Qi

n of the point yi on all the interior surfaces of the
duct. The coefficients are expressed as

Ap1i;j ¼
1

2
dij �

e�ikRij ðikRij þ 1Þ

4pR2
ij

ðr0j � ri cosðyi � y0jÞÞ

Rij

DS1j, (25)

Ap2i;j ¼ �
e�ikRij ðikRij þ 1Þ

4pR2
ij

ðZ0j � ZiÞ

Rij

DS2j , (26)

Ap3i;j ¼
e�ikRij ðikRij þ 1Þ

4pR2
ij

ðZ0j � ZiÞ

Rij

DS3j, (27)

Av2i;j ¼ �
e�ikRij

4pRij

DS2j, (28)

Av3i;j ¼
e�ikRij

4pRij

DS3j, (29)

where DSj is the area of the surface grid element.
The boundary integral Eq. (19) is numerically discretized as follows:

Ap4ðyi; yjÞQ
n
4ðyjÞ þ Ap5ðyi; yjÞQ

n
5ðyjÞ þ Ap6ðyi; yjÞQ

n
6ðyjÞ

þ Av5ðyi; yjÞQ
n
Z5ðyjÞ þ Av6ðyi; yjÞQ

n
Z6ðyjÞ ¼ 0, (30)

where Q4
n(yj) is the Qt

n of the point yj on the f4 surface, Q5
n(yj) is the Qt

n of the point yj on the f5 surface, Q6
n(yj)

is the Qt
n of the point yj on the f6 surface, QZ5

n(yj) is the qQt
n/qZ of the point yj on the f5 surface and QZ6

n(yj) is
the qQt

n/qZ of the point yj on the f6 surface. The coefficients are expressed as

Ap4i;j ¼
1

2
dij þ

e�ikRij ðikRij þ 1Þ

4pR2
ij

ðr0j � ri cosðyi � y0jÞÞ

Rij

DS4j, (31)

Ap5i;j ¼
e�ikRij ðikRij þ 1Þ

4pR2
ij

ðZ0j � ZiÞ

Rij

DS5j, (32)

Ap6i;j ¼ �
e�ikRij ðikRij þ 1Þ

4pR2
ij

ðZ0j � ZiÞ

Rij

DS6j , (33)

Av5i;j ¼
e�ikRij

4pRij

DS5j, (34)

Av6i;j ¼ �
e�ikRij

4pRij

DS6j. (35)
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Notice that Eq. (18) is suitable for the hard interior duct. Eq. (17) has one more term

Z
f 1

iMa2e�ikR

4pRb3znk

q2Qn
t ðYÞ

qZ2
�

2ik
Ma

qQn
t ðYÞ

qZ
�

k2

Ma2
Qn

t ðYÞ

� �� �
dS

than Eq. (18) when the liners are laid on the interior wall of the duct. The integral surface of this term only
covers where the liners are actually laid on. The partial differential terms q2Qt

n/qZ2 and qQt
n/qZ can be

expressed with the differential schemes about Qt
n. Then another term Bp1(yi,yj)Q1

n(yj) should be added on the
left-hand side of Eq. (24) when the point yj is located on the interior wall with liners. The coefficient Bp1(yi,yj)
will be different with different differential schemes about Qt

n and the expression will not be presented here. In
nature the acoustic pressure differs hardly whichever the schemes adopted.

The number of unknown variables in Eqs. (24) and (30) are both five and the number of the integral surfaces
are three. In order to obtain a closed equation group, it is necessary to add the continuous conditions on the
duct openings, which are

Qn
2ðyjÞ ¼ Qn

5ðyjÞ Qn
3ðyjÞ ¼ Qn

6ðyjÞ, (36a,b)

Qn
Z2ðyjÞ ¼ Qn

Z5ðyjÞ Qn
Z3ðyjÞ ¼ Qn

Z6ðyjÞ. (37a,b)

The matrix equation group is as follows:

Ap1 Ap2 Ap3 0 Av2 Av3

Ap1 Ap2 Ap3 0 Av2 Av3

Ap1 Ap2 Ap3 0 Av2 Av3

0 Ap5 Ap6 Ap4 Av5 Av6

0 Ap5 Ap6 Ap4 Av5 Av6

0 Ap5 Ap6 Ap4 Av5 Av6

0
BBBBBBBBB@

1
CCCCCCCCCA

Qn
1

Qn
2

Qn
3

Qn
4

Qn
Z2

Qn
Z3

0
BBBBBBBBB@

1
CCCCCCCCCA
¼

Qn
1i

Qn
2i

Qn
3i

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA
, (38)

where Q1i
n, Q2i

n and Q3i
n represent the Qi

n of the incident acoustic pressure on the f1, f2 and f3 surfaces,
respectively. The Qt

n and qQt
n/qZ on every discrete point xj can be obtained by solving Eq. (38). Then the

acoustic pressure of any point inside or outside the duct can be obtained through Eqs. (22), (23) and (10).
2.3. Verification and investigation

The directivity predictions of the axisymmetric cases are used to validate the 3D BIEM program. The cases
with the same acoustic parameters, duct geometry and spinning axial dipoles sources in Ref. [11] are used for
comparisons. Both the radius a and the length L of the duct are 1m. The incident acoustic sources are B ¼ 20
spinning axial dipoles, which lie at the same radius r00 ¼ 0.9a with a uniform interval in circumference, located
on the duct middle plane Z ¼ 0. The thrust FT of each point source is 50N. The flight Mach number is 0.4 and
the Helmholtz number ka is 24.4. The liner configurations are outlined in Table 1.

Figs. 3–5 show the comparisons of directivity predicted by the 3D approach and the 2D approach for the
same cases as that shown in Figs. 4–6 of Ref. [11], respectively, but herewith the origin of sound pressure level
(SPL) is from 0 dB for comparing with the following non-uniform liner cases, and in Ref. [11] it is from 90 dB
Table 1

Liner axis location and parameters for 3D finite duct model verification

Liner configuration Liner axis location (m) Specific impedance

1 �0.5–0.5 Hard

2 0.0–0.4 0.5+0.5i

3 �0.4–0.0; 0.0–0.4 2; 0.5+0.5i
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Fig. 5. Directivity comparison between 3D and axisymmetric predictions; configuration 3; – –, 3D prediction; —, axisymmetric

prediction.

Table 2

Liner configurations for investigating the hard-splices’ influence on finite duct

Liner configuration Splice number Splice location Splice configuration

4 1 0–51 Periodic

5 2 0–51; 180–1851 Periodic

6 4 0–51; 90–951; 180–1851; 270–2751 Periodic

7 4 0–51; 70–751; 200–2051; 270–2751 Non-periodic

B. Yang, T.Q. Wang / Journal of Sound and Vibration 315 (2008) 1016–10341024
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for the purpose of comparing with the results of TBIEM-3D [12]. The figures show a relatively good
agreement between the 3D and the axisymmetric predictions.

To investigate the influence of hard-splices of liners on the duct acoustic radiation and propagation, a series
of liner configurations with different splice numbers and locations are selected, as listed in Table 2. The axial
locations of all the liners are at 0–0.4, as that of configuration 2 listed in Table 1. The directivity comparisons
of liner configurations 2, 4 and 5 are displayed in Fig. 6; the observer points are located at a semicircle on
y ¼ 0 plane in a cylindrical frame (r, y, Z). The radius of the semicircle is 10m and the center is the duct center
point. Although the directivities on different y planes will be different when the hard-splices exist, only the
directivities on y ¼ 0 plane are presented in Fig. 6 for offering a qualitative comparison between the
circumferentially non-uniform and the uniform boundary. The directivity comparisons of different y planes
will be presented in Fig. 7 which illustrate that the directivity on the y ¼ 0 plane is enough for qualitative
analyses.

In Fig. 6 it is obvious that the acoustic pressure near the axis is up to about 100 dB when the hard-splices
exist, and it is close to zero when no hard-splices exist. The circumferentially non-uniform boundary condition
can cause an acoustic pressure accumulation near the duct axis, while it may be counteracted by a
circumferentially uniform boundary. In Fig. 6 the angles of the greatest SPL corresponding to different
configurations are approximately the same and the greatest SPL of the non-uniform liners are a slightly
greater than that of a uniform liner.

Liner configuration 7 in Table 2 is chosen as a representative case to illustrate the influence of more general
hard-splice distribution, circumferentially non-periodic. Fig. 7 gives the directivity comparisons of
configuration 7 on three y planes: y ¼ 0, 120 and 240. Although the values have a little differ slightly on
different y planes, the angles and values of the greatest SPL are approximately the same and the values near
the axis are also up to 100 dB. This indicates that the directivity on the y ¼ 0 plane could reasonably provide a
qualitative analyses.

The instantaneous pressure contours on a circular cross-section in the middle of the liner are presented in
Figs. 8–11 (configurations 2, 5–7) for a qualitative understanding of the influence of hard-splices on the
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Fig. 10. Instantaneous acoustic pressure contour on a specific cross-section; configuration 6.
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Fig. 12. Sketch map of an infinite length duct model.
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acoustic propagation. The hard-splices in Figs. 8–10 are circumferentially periodic, while the hard-splices in
Figs. 11 are circumferentially non-periodic. The hard-splice locations can be easily recognized in Figs. 8–10.
This phenomenon can be explained by the mode scattering mechanism, which will be discussed in the
following infinite duct model investigation.

3. Infinite duct model by BIEM

3.1. Physical model and numerical implementation

As can be seen from the sketch of the infinite duct model illustrated in Fig. 12, the same acoustic sources as
that of the finite duct model are situated on a specific cross-section. The region between the upstream and
downstream planes is manipulated in the same way as that in the finite duct model. Hence BIEM and Eqs. (17)
and (22) could be used to calculate the acoustic field in the region. The acoustic field outside the region is
expressed by a combination of acoustic modes in an infinite circular duct which implies the non-reflecting
boundary. The continuous conditions on the surfaces are used to couple the inside and outside acoustic field.
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The acoustic pressure outside the region is expressed by the following series:

p ¼
XM

m0¼�M

XN

n0¼1

A�m0n0
Jm0
ðkr;m0n0rÞe�im0yþik

�
Z

Z0 , (39)

where Z0 is the axis coordinate in the axially moving frame and m0 is the circumferential mode order, which
may be positive or negative. It is necessary to include both the positive and the negative modes in the analyses
since the asymmetry of the liner will excite modes in both circumferential directions. The circumferential and
the radial modes should cover all the cut-on modes and a few cut-off modes. The radial order n0 is specified
from 1; the mode of (0,1) represents the plane wave. kr;m0n0 is the n0th radial wavenumber for the m0th
circumferential mode and is the n0th solution of the eigenvalue problem

J 0m0
ðkr;m0n0aÞ ¼ 0. (40)

The axial wavenumber kZ
7 is

k�Z ¼

�Mak�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�ð1�Ma2Þkr;m0n0

p
1�Ma2

cut-on;

�Mak�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�Ma2Þkr;m0n0�k2

p
1�Ma2

cut-off :

8>><
>>: (41)

The boundary integral equations (17) and (22) are expressed in the axially moving stretched frame and Eqs.
(39)–(41) are expressed in the axially moving frame, so that Z0 ¼ bZ.

On the upstream/downstream planes, the coupling conditions are expressed as

Qn
t ðr; y;ZÞ e

�ikMaZ ¼
XM

m0¼�M

XN

n0¼1

A�m0n0
Jm0
ðkr;m0n0rÞ e�im0yþik

�
Z

Zb, (42)

qQn
t

qZ
¼

XM
m0¼�M

XN

n0¼1

ðikMaþ ik�ZbÞA
�
m0n0

Jm0
ðkr;m0n0rÞ e�im0yþik

�
Z

Zb eikMaZ. (43)

The conjugate orthogonal condition of modes is used to determine the modal coefficients Aþm0n0
and A�m0n0

.
The eigenfunction is expressed as

Em0n0ðr; yÞ ¼ Jm0
ðkr;m0n0rÞ e�im0y, (44)

then the conjugate of Em0n0 is

E�m0n0
ðr; yÞ ¼ Jm0

ðkr;m0n0rÞ eim0y. (45)

If m0 6¼m00 or n0 6¼n00, Z 2p

0

Z a

0

Em0n0 ðr; yÞE
�
m0
0
n0
0
ðr; yÞrdrdy ¼ 0. (46)

If m0 ¼ m00 and n0 ¼ n00,Z 2p

0

Z a

0

Em0n0 ðr; yÞE
�
m0n0
ðr; yÞrdrdy ¼ p a2 �

m2
0

k2
r;m0n0

 !
J2

m0
ðkr;m0n0aÞ. (47)

Combining Eqs. (46) and (47) with (42), the matrix equation is obtained on the upstream/downstream
modal coupling planes

a11 . . . a1K

..

. . .
. ..

.

aK1 � � � aKK

0
BB@

1
CCA

Qn
t1

..

.

Qn
tK

0
BB@

1
CCAþ

b11 0

. .
.

0 bKK

0
BB@

1
CCA

A��M0

..

.

A�MN

0
BBB@

1
CCCA ¼

0

0

0

0
B@

1
CA, (48)
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where K ¼ (2M+1)�N is the total mode number including all the combinations of circumferential modes and
radial modes. The elements in the coefficient matrixes are

aij ¼

Z yiþDy

yi

Z rjþDr

rj

Jm0
ðkr;m0n0rÞ eim0yrdrdy, (49)

bii ¼ �p a2 �
m2

0

k2
r;m0n0

 !
J2

m0
ðkr;m0n0aÞ eik

�
Z

ZbeikMaZ. (50)

Combining Eqs. (46) and (47) with (43), another matrix equation is obtained

a11 . . . a1K

..

. . .
. ..

.

aK1 � � � aKK

0
BB@

1
CCA

qQn
t1

qZ

..

.

qQn
tK

qZ

0
BBB@

1
CCCAþ

b011 0

. .
.

0 b0KK

0
BB@

1
CCA

A��M0

..

.

A�MN

0
BBB@

1
CCCA ¼

0

0

0

0
B@

1
CA, (51)

where aij is the same as that in Eq. (48) and b0ij is

b0ii ¼ �p a2 �
m2

0

k2
r;m0n0

 !
J2

m0
ðkr;m0n0aÞðikMaþ ik�ZbÞe

ik�
Z

ZbeikMaZ. (52)

The discrete grid point number on the upstream/downstream modal coupling planes is equal to K; then, the
Qt

n and qQt
n/qZ at every discrete point xj on the interior surfaces of the duct and the modal coefficients A�m0n0

can be obtained by solving Eqs. (24), (48) and (51) together.

3.2. Verification and investigation

The verification is performed by comparing the prediction with a known analytical solution of an infinite
duct with a hard wall [13]. For the spinning point sources at r00, the analytical solution in a moving stretched
frame is

p0ðr; y;ZÞ ¼ �
BF T

2

X1
m0¼�1

X1
n0¼1

Jm0
ðkr;m0n0rÞJm0

ðkr;m0n0r00Þk
�
Ze

ik�
Z

Zb�im0y

pða2 � ðm2
0=k2

r;m0n0
ÞÞJ2

m0
ðkr;m0n0aÞkn0m0

, (53)

where

kn0m0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� ð1�Ma2Þk2

r;m0n0

q
cut-on;

�i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�Ma2Þk2

r;m0n0
� k2

q
cut-off :

8><
>: (54)

Fig. 13 shows an instantaneous pressure distribution on the axis section inside the duct; the left half of the
contour is from the analytical solution (53), and the right half is from the numerical calculation. The duct
radius is 0.2m with an axial inflow Mach number 0.4, containing two spinning point sources at the radius
r00 ¼ 0.9a with FT ¼ 50N, which means the incident fundamental circumferential mode is second order, and
ka ¼ 4.4. The comparison in Fig. 13 shows a good agreement and the difference of A�m0n0

obtained by BIEM
and the analytical solution is in the range of 12%, which is listed in Table 3. The infinite duct model is verified
by these comparisons.

Then five liner configurations outlined in Table 4 are selected to investigate the mode scattering phenomena
excited by a circumferentially non-uniform boundary condition. The acoustic parameters and duct geometry
are the same as those used in the above infinite duct case. When ka is 4.4, the modes (0,1) (0,2) (71,1) (72,1)
and (73,1) are cut-on. The liner with a length of 0.2m is located 0.1m away from the source plane in the
upstream. The hard-splices in configurations 8–11 are periodically distributed in the circumferential direction.
It is anticipated by the rotor–stator interaction mechanism that the circumferential mode orders excited by the
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Fig. 13. Instantaneous acoustic pressure isoline comparison between analysis solution and the infinite length duct model; the left half

presents an analytical solution; the right half presents a numerical calculation.

Table 3

Amplitude value of Aþm0n0
and A�m0n0

by BIEM and analytical solution

Modal coefficient Analytical solution BIEM Difference (%)

Aþm0n0
2521.1 2270 9.96

A�m0n0
799.6 705 11.83

Table 4

Liner configurations for investigating mode scattering in an infinite duct model

Liner configuration Splice number Splice location Splice configuration

8 0 None –

9 1 0–101 Periodic

10 2 0–101; 180–1901 Periodic

11 3 0–101; 120–1301; 240–2501 Periodic

12 3 0–101; 100–1101; 200–2101 Non-periodic

B. Yang, T.Q. Wang / Journal of Sound and Vibration 315 (2008) 1016–10341030
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Fig. 15. Modal spectrum of a cut-on incident mode; configuration 9.
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scattering from periodic splices will be specified by the sequence

m0 ¼ mI � lJ, (55)

where mI is the circumferential mode order of the incident wave, l is an arbitrary integer and J is the number of
splices distributed periodically in circumference.

The modal spectra of the amplitude of Aþm0n0
at the cross-section 0.6m apart from the source plane in the

upstream are presented in Figs. 14–17 where the modes determined by Eq. (55) can be visualized clearly. The
number of hard-splices is zero in liner configuration 8, and so only the incident circumferential mode (second
order) exists in Fig. 14. It is noticed that a few cut-off radial modes appear in all the following modal spectra
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Fig. 17. Modal spectrum of a cut-on incident mode; configuration 11.
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especially at the incident circumferential mode. This is because the incident source used in our model is in free
space. All the radial modes are included in our incident source and so they inevitably appear in the modal
spectra although they are cut-off and attenuate quickly. It can be seen that their values are very small
compared with the prevailing modes. In fact, this kind of incident source including all the radial modes is
closer to the actual situation than only one single mode as the input source.

The number of hard-splices is one in liner configuration 9; according to Eq. (55) and the cut-on condition, all
the cut-on circumferential mode orders 71st, 0th, 72nd and 73rd are excited and all the cut-on modes (0,2)
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(71,1) (72,1) and (73,1) are evident in Fig. 15 except for the plane wave (0,1), which is absent when the
incident sources are non-uniform in the radial direction. The number of hard-splices is two in liner configuration
10; the circumferential mode orders—2nd and 0th are excited and distinct as modes (�2,1) and (0,2) in Fig. 16.
Only the modes (�1,1) and (2,1) given in Fig. 17 for liner configuration 11 have three hard-splices.

It is assumed that every cut-on circumferential mode will be excited by circumferentially non-periodic hard-
splices. Configuration 12 is one case with a non-periodic hard-splices liner. All the cut-on circumferential mode
orders 71st, 0th, 72nd and 73rd are excited. In Fig. 18 all the cut-on modes except for the plane wave are
observed. The modal spectrum of the circumferentially non-periodic hard-splices liner case is similar to that with
only one hard-splice, and so the circumferential modes excited in Fig. 18 are the same as those in Fig. 15.
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Fig. 18. Modal spectrum of a cut-on incident mode; configuration 12.
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Then liner configuration 11 is taken to consider the situation of cut-off incident mode1, where the incident
circumferential mode is increased to 4, which is beyond the cut-on modes for ka ¼ 4.4 and the other parameters
are maintained the same as the above illustrations. The number of hard-splices of configuration 11 is three, and
according to Eq. (55) the �2nd and 1st circumferential modes will be excited, and be cut-on based on the ducted
acoustics; these modes still appear in Fig. 19, although the amplitudes of the scattered cut-on modes are greater
than that of the cut-off incident mode, but they are too small to be included in the acoustic liners’ design process.

The mechanism of mode scattering caused by hard-splices liners is revealed by the infinite duct model. The
fact that the locations of hard-splices are visualized can be explained by the mode scattering mechanism.

4. Conclusions

A 3D BIEM is developed and verified, which deals with the ducted-fan noise of a finite cylindrical duct with
an axially uniform inflow. The acoustic liners inside a duct are allowed to be circumferentially or axially non-
uniform. The influence of the longitudinal hard-splices of liners, due to manufacturing, on the duct acoustic
radiation and propagation is discussed. Four liner configurations with different hard-splice locations and
numbers are investigated. It is observed from the radiation directivities that the acoustic pressure near the axis
is increased and is up to about 100 dB when the hard-splices exist, but it is near zero in the uniform liner case.
The angles of the greatest SPL for different configurations are approximately the same and the greatest SPL of
the non-uniform liners is a slightly greater than that of a uniform liner. In the contours of liners’ across
section, the locations of hard-splices could be easily recognized for the cases of circumferentially periodically
distributed hard-splices.

In order to investigate the mode scattering phenomena caused by hard-splices, a 3D infinite duct model is
developed. The BIEM is used for the acoustic field between the upstream/downstream planes, where coupling
conditions are implemented to match the boundary integration with the analytical series. Then the modal
coefficients of the upstream and downstream have been obtained, and the mode scattering phenomena have
been observed. Through the spectra of modal coefficients it is found that for the circumferentially periodically
distributed hard-splices the modal scattering mechanism is similar to that of the rotor-stator interaction, and
for the circumferentially non-periodically distributed hard-splices almost all of the cut-on circumferential
modes could be excited. Although the hard-splices could scatter out cut-on modes from the cut-off incident
mode, the effects of excited cut-on modes are too minor to be included in the ducted-fan noise prediction.

It is concluded that the present finite duct model does provide an accurate and rapid noise prediction tool
for engineering purposes with an emphasis on the effect of hard-splices on duct acoustic propagation and
radiation. Furthermore, it could be a good verification tool for other numerical simulations.
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